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Stability of Strongly Acidic Rare Earth Oxalate Solutions
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Stability of strongly acidic rare earth (III) oxalate aqueous
solutions was studied as a function of concentrations of oxalic
acid, nitric acid, and rare earth (III) nitrate, RE(N03)3, at 30 °C.
Induction period, Id’ for precipitation of rare earth oxalate was
given by I; = kpp [HNO,] L [RE(NO,) ] 7% [H,c,0,] 72, where
subscript T indicates the total concentration and kRE is constant
for rare earth metal ion. kRE values for Ce, Pr, Nd, Sm, Gd, Dy,
Ho, Er, Yb, and Y were evaluated as 110, 14, 6.2, 2.5, 2.3, 4.8,
6.6, 13, 23, and 16/(10-6sM), respectively. These results can be
well explained by the simple precipitation theory based on
solubility products of rare earth (III) oxalates.

A fine rare earth oxide powder can be obtained by thermal decomposition of
the fine powder of its oxalate, which was produced by the rapid addition of aq.
ammonia solution into the strongly acidic solution of rare earth nitrate and
oxalic acid mixture. 1) In this process, use of a stable and clear solution (
containing no precipitate) of the mixture is essential, because the presence of
small amounts of the oxalate precipitate may course a rapid growth of crystals
and it makes impossible to obtain the fine powder of the oxalate. Barrett et al.2)
has reported that the solutions prepared by them were quite stable. However, we
have often encountered the formation of the oxalate precipitates in the solutions.
The induction period of the precipitation from the acidic solution was found to
depend on the kinds and concentration of rare earth ions, as well as on the nitric
acid and the oxalic acid concentrations. Based on these findings, the conditions
to obtain the stable solution of the mixture was demonstrated.

Each rare earth nitrate solution was prepared by dissolving the oxides of
Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, and Y (99.9% purity), purchased from Rhone
Poulence, into reagent grade conc. nitric acid (S.G. 1.38, 60%), and by heating
the solution to remove an excess nitric acid. The rare earth concentrations were
adjusted to 1.0 mol dm_3 with distilled water. The induction period, Id’ was de-
termined at 30 °C by measuring the time at which turbidity of the oxalate precipi-
tate begins to be visible after the mixture being prepared in a clean room (class
1000) in order to avoid contamination of dust particles, by the following proce-
dure: The reagent solutions were quickly added with vigorous stirring in the order
of oxalic acid, nitric acid, rare earth nitrate, and finally distilled water in
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order to adjust the total volume of the mixture to 100 cm3 (in 200 cm3 pyrex

beaker). The addition order of the reagent solution is important to obtain good
reproducibility and so, other orders gave irregular and very small values of Id‘
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I4 = k [HNOS] . [(Nog), ] [H,0,0,]; (1)

where, k is a constant and x is estimated to be about -2 from Fig. 2.

The solubility product, KSp of yttrium oxalate is given by an Eq. 2.

Kgp * [¥3772 [c,0,27]2 = [¥3"]% k2 [H,c,0,]° [u*]® (2)

where, K, = [1*] 2 [czo4 2-] [H2C204]—1 - 2.9x107% &) |

The precipitation theory tells us that when the value of the concentration product
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, K’, based on the total concentration of the species in the solution, is larger
than that of Ksp’ the precipitation takes place till K’ reaches to that of Ksp (
so long as the induction period of precipitation is concerned, the concentrations
are well approgimated by the total onez). Therefore, when Ksp/K’ ratio (KSP/K’ S
Ksp [Y(N03)3]T K, 3 [H202041F3 [HNO31F) is less than 1, the precipitation must
occur. According to the von Weimarn’s rule, an initial rate of precipitation
becomes higher as the ratio decreases, because the driving force of the precipi-
tatio becomes larger. So, it is worthy of note that the concentration depend-
ences of Eq. 1 are the same as those appeared in KSP/K’ ratio equation. There-

fore, Id can be deduced to be expressed as follows:

6

I, =k’ (Ksp/K’) =k’ K (3)

- -2 -
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It can be easily deduced that x value in Eq. 1 must be -2 and k in Eq. 1 is

k’ Ksp Ka—3 by comparing Eq. 3 and Eq. 1. The value of Id at the constant con-
centrations of the term in Eq. 3 and KSp for rare earth (III) ions are shown in

Fig. 3.
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’

p
is shown in Fig. 4.

n
1.0 where k 1is a proportional constant, and by the

It is given by kRE = k" Ksp
two lines corresponding to two groups, that is, so-called, light rare earths and
middle heavy ones. So, the Eq. 3 is valid for all of rare earth (III) ions and
k’RE values corresponding tg)k’ in the Eq. 3 for rare earth (III) ions were
estimated by the use of Ka as shown in Table 1. The values of k’RE being
almost constant for light rare earths are different from those for middle heavy
ones.

For the induction period, Kubo et al. 5) proposed the equation of Id SOrl =

constant where SO is concentration of supersaturation and n is a material constant.
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Table 1. kRE and k’RE values for rare earth (III) ions

Rare earth (III) Ce Pr Nd Sm Gd Dy Ho Er Yb Y

kpp/(107%/mo1 am™3) 110 14 6.2 2.5 2.3 4.8 6.6 13 23 16
k> /(108s) 2.0 2.0 ©

RE . . T - - 0.3 - 0.2 0.1 0.3
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" 1.0
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